Homework Answer

Angle properties of circle

```
1. a x = 30^{\circ} (theorem 2)

b x = 25^{\circ}, y = 25^{\circ} (theorem 2 for both angles)

c x = 32^{\circ} (theorem 2)

d x = 40^{\circ}, y = 40^{\circ} (theorem 2 for both angles)

e x = 60^{\circ} (theorem 1)

f x = 40^{\circ} (theorem 1)

g x = 84^{\circ} (theorem 1)

h x = 50^{\circ} (theorem 2); y = 100^{\circ} (theorem 1)
```

```
2. a s = 90^{\circ}, r = 90^{\circ} (theorem 3 for both angles)

b u = 90^{\circ} (theorem 4); t = 90^{\circ} (theorem 3)

c m = 90^{\circ}, n = 90^{\circ} (theorem 3 for both angles)

d x = 52^{\circ} (theorem 3 and angle sum in a triangle = 180°)

e x = 90^{\circ} (theorem 4)

f x = 90^{\circ} (theorem 4); y = 15^{\circ} (angle sum in a triangle = 180°)
```

3.

a $lpha=120^\circ$ (sum of angles about a point is 360°),

 $eta=60^\circ$ (angle at the circumference is half the angle at the center standing on the same arc)

b $\theta = 30^{\circ}$ ($\angle AOB = 60^{\circ}$, sum of angles about a point is 360° and angle at the circumference is half the angle at the center standing on the same arc, so θ is half of $\angle AOB$)

c $\theta = 220^{\circ}$ ($\angle SOR = 140^{\circ}$, angle at the center is twice the angle at the circumference standing on the same arc, and $\theta + \angle SOR = 360^{\circ}$, sum of angles about a point is 360°)

d $lpha=eta=40^\circ$ (any angle at the circumference is half the angle at the center standing on the same arc)

 $e \theta = 320^{\circ} (\angle SOR = 40^{\circ})$, angle at the center is twice the angle at the circumference standing on the same arc, and $\theta + \angle SOR = 360^{\circ}$, sum of angles about a point is 360°)

 $lpha=20^\circ$ (angle at the circumference is half the angle at the center standing on the same arc, $\angle SOR=40^\circ$)

f $\alpha = 100^{\circ}$ (OR = OQ radii, so base angles of an isosceles triangle are both 40° , sum of angles in a triangle is 180°),

 $eta=140^\circ$ (sum of angles about a point is 360°),

 $\gamma=20^\circ$ (OR=OP radii, γ is a base angle of an isosceles triangle)

 ${f g}~lpha=80^\circ$ (angle at the circumference is half the angle at the center standing on the same arc),

 $eta=200^\circ$ (sum of angles about a point is 360°),

 $\gamma=100^\circ$ (angles at the circumference are half the angle at the center standing on the same arc)

h $lpha=60^\circ$ ($\angle DAB=90^\circ$, Thales' theorem, so $lpha+30^\circ=90^\circ$),

 $eta=60^\circ$ (OA=OB radii, so lpha=eta, base angles of an isosceles triangle),

 $\gamma=30^\circ$ ($igtriangle ABC=90^\circ$, Thales' theorem, so $\gamma+eta=90^\circ$)

i $lpha=eta=45^\circ$ (both are base angles in isosceles triangles with the third angle 90°)

4.

a $lpha=90^\circ$ (Thales' theorem),

 $eta=10^\circ$ (alternate angles, $AB\parallel FG$)

b $lpha=60^\circ$ (OP=OA=AP, so the triangle is equilateral),

 $eta=30^\circ$ (angle at the circumference is half the angle at the center standing on the same arc)

c $lpha=20^\circ$ (alternate angles, $PO\parallel QR$),

 $\gamma=40^\circ$ (angle at the center is twice the angle at the circumference standing on the same arc),

 $eta=40^\circ$ (alternate angles, $PO\parallel OR$)

d $lpha=220^\circ$ (sum of angles about a point),

 $eta=110^\circ$ (angle at the circumference is half the angle at the center standing on the same arc),

 $\gamma=60^\circ$ (sum of angles in a quadrilateral is 360°)

e $lpha=200^\circ$ (sum of angles about a point),

 $eta=100^\circ$ (angle at the circumference is half the angle at the center standing on the same arc),

 $\gamma=80^\circ$ (co-interior angles, $PQ\parallel OR$)

f $lpha=100^\circ$ (angle at the circumference is half the angle at the center standing on the same arc),

 $eta=60^\circ$ (construct OA, as OB=AB=OA, the triangle is equilateral),

 $\gamma = 40^\circ$ (sum of angles in a quadrilateral is 360°)

Tangents to a circle

1. $\mathbf{a} x = z = 90^{\circ}$ (theorem 4); $y = w = 20^{\circ}$ (theorem 5 and angle sum in a triangle = 180°) $\mathbf{b} s = r = 90^{\circ}$ (theorem 4); $t = 140^{\circ}$ (angle sum in a quadrilateral = 360°) $\mathbf{c} x = 20^{\circ}$ (theorem 5); $y = z = 70^{\circ}$ (theorem 4 and angle sum in a triangle = 180°) $\mathbf{d} s = y = 90^{\circ}$ (theorem 4); $x = 70^{\circ}$ (theorem 5); $r = z = 20^{\circ}$ (angle sum in a triangle = 180°) $\mathbf{e} x = 70^{\circ}$ (theorem 4 and angle sum in a triangle = 180°); $y = z = 20^{\circ}$ (angle sum in a triangle = 180°) $\mathbf{f} x = y = 75^{\circ}$ (theorem 4 and angle sum in a triangle = 180°); $z = 75^{\circ}$ (theorem 1)

2.

- a x=5 (tangents to a circle from an external point have equal length),
- $lpha=70^\circ$ (base angle of an isosceles triangle),
- $eta=40^\circ$ (sum of angles in a triangle),

 $\gamma=20^\circ$ ($\angle OSP=90^\circ$)

b x=8 (tangents to a circle from an external point have equal length),

 $lpha=70^\circ$ (base angle of an isosceles triangle),

 $heta=140^\circ$ ($ar{} ZT=ar{} S=90^\circ$, sum of angles in a quadrilateral)

 ${f c}~x=2$ (tangents to a circle from an external point have equal length),

y=3, z=3 (tangents to a circle from an external point have equal length)

d x = 7 (SQ = 4, tangents to a circle from an external point have equal length, so RS = 7)

e x = 9 (SB = 4 (equal tangents), SP = 14 and TP = 14 (equal tangents), TA = 5 (equal tangents), x = 14 - 5)

f $\alpha = 100^{\circ}$ (reflex $\angle SOT = 260^{\circ}$, angle at the center is twice the angle at the circumference standing on the same arc, sum of angles at point O),

 $eta=70^\circ$ (sum of angles in a quadrilateral),

 $\gamma=20^\circ$ ($ar{}PSO=90^\circ$)

Intersecting chords, secants and tangents

1. **a** *m* = 3 **b** *m* = 3 **c** *m* = 6 **d** *n* = 1 **e** *m* = 7.6 **f** *n* = 13 **g** x = 12 **h** x = $5\frac{1}{2}$ **i** x = 2 **j** x = 30 **k** x = 2 $lx = 2\sqrt{2}$ **m** x = 1.2 **n** x = 5 $\mathbf{o} = \sqrt{30}$ **p** x = 6 **q** x = 7.5 **r** x = 5