Homework Answer

Chapter 2: Indices and surds

2A Irrational numbers including surds

1.

3√2	5√2	6√2	10√2
4√2	3√3	6√3	5√6
10√3	7√2	8√2	6√5

2.

8√2	15√2	24√2	15√2
18√5	21√3	40√3	63√2
100√2	40√3	24√2	42√5
2√2	√2	√2	√2
√2	√6	2√3	2√2

2√5/9	2√7/7	√2/2	√7/3
2√15/9	√7/3	√2/2	4/5

2B Adding and subtracting surds

1.

1) $6\sqrt{2}$	2) $-2\sqrt{7}$
3) $4\sqrt{5} + 2\sqrt{3} + 8$	4) $2\sqrt{x}+7\sqrt{y}$
5) $3\sqrt{10} + 7\sqrt{11}$	6) $11\sqrt{2} + 3\sqrt{5}$
7) $3\sqrt{3}+4\sqrt{7}$	8) $18\sqrt{x}-2\sqrt{y}$
9) $-2\sqrt{6}$	10) $6\sqrt{x}+3\sqrt{y}$

2.

1) $6\sqrt{2}$	2) 8√2
3) $6\sqrt{3}$	4) 8 √ 5
5) $6\sqrt{6}$	6) $7\sqrt{3}+2\sqrt{2}$
7) $8\sqrt{2}$	8) 8√11
9) 5√7	10) $2\sqrt{5}$

3.

1) $3\sqrt{a}-\sqrt{2a}$	2) $33\sqrt{2a}$
3) $8a-7\sqrt{3a}$	4) $6\sqrt{3ab}$
5) $a\sqrt{a}+a^2\sqrt{a}$	6) $5a\sqrt{ab}+3\sqrt{ab}$
7) $4a - 2\sqrt{2a}$	8) $7a\sqrt{3a}$

4.

1) $\frac{7\sqrt{2}}{6}$	2) $\frac{3\sqrt{2}}{2}$	3) 0	4) $\frac{12\sqrt{5}}{5}$
5) $\frac{\sqrt{2}}{6}$	6) 2 √3	7) $-\frac{\sqrt{2}}{2}$	8) $\frac{31\sqrt{2}}{12}$

5.

Expression 1

Expression	2 /E : /20 4 /E	Expression 2
$2\sqrt{5} + \sqrt{20} - 4\sqrt{5}.$		$\sqrt{8} + \sqrt{18} - \sqrt{2} - \sqrt{32}.$
1. Factor inside $\sqrt{20}$: $\sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5}.$	1. Factor inside each surd: $\sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2}, \sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}, \sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}.$
2. Substitute back:	$2\sqrt{5} + 2\sqrt{5} - 4\sqrt{5} = (2+2-4)\sqrt{5} = 0.$	2. Substitute back: $(2\sqrt{2}) \ + \ (3\sqrt{2}) \ - \ \sqrt{2} \ - \ (4\sqrt{2}) = (2+3-1-4)\sqrt{2} = 0.$
Result: 0.		Result: 0.

Expression 3

 $3\sqrt{3} + \sqrt{27} - 6\sqrt{3}.$

 $\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}.$

 $3\sqrt{3} + 3\sqrt{3} - 6\sqrt{3} = (3+3-6)\sqrt{3} = 0.$

1. Factor $\sqrt{27}$:

Result: 0.

Expression 5

 $2\sqrt{7} + \sqrt{28} - 4\sqrt{7}.$

 $\sqrt{28} = \sqrt{4 \times 7} = 2\sqrt{7}.$

 $2\sqrt{7} + 2\sqrt{7} - 4\sqrt{7} = (2+2-4)\sqrt{7} = 0.$

1. Factor $\sqrt{28}$:

2. Substitute back:

Result: 0.

Expression 7

 $\sqrt{50} - 5\sqrt{2} + \sqrt{8} - 2\sqrt{2}.$

1. Simplify each surd:

 $\sqrt{50}=\sqrt{25\times 2}=5\sqrt{2},\quad \sqrt{8}=\sqrt{4\times 2}=2\sqrt{2}.$

- 2. Substitute back:
 - $5\sqrt{2} 5\sqrt{2} + 2\sqrt{2} 2\sqrt{2} = (5 5 + 2 2)\sqrt{2} = 0.$

Result: 0.

Expression 4

$$\sqrt{12} - \sqrt{27} + \sqrt{3}.$$

1. Factor where possible:
 $\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}, \quad \sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}.$
2. Substitute back:
 $2\sqrt{3} - 3\sqrt{3} + \sqrt{3} = (2 - 3 + 1)\sqrt{3} = 0.$

Result: 0.

Expression 6

$$4\sqrt{2} - \sqrt{32} + \sqrt{8} - 2\sqrt{2}.$$

1. Simplify each surd:

$$\sqrt{32}=\sqrt{16\times 2}=4\sqrt{2},\quad \sqrt{8}=\sqrt{4\times 2}=2\sqrt{2}.$$
 2. Substitute back into the expression:

$$4\sqrt{2} - 4\sqrt{2} + 2\sqrt{2} - 2\sqrt{2} = (4 - 4 + 2 - 2)\sqrt{2} = 0.$$

Result: 0. Expression 8

1. Factor
$$\sqrt{45}$$
:

Result: 0.

$$\sqrt{45} = \sqrt{9 imes 5} = 3\sqrt{5}.$$

 $3\sqrt{5} + \sqrt{45} - 6\sqrt{5}.$

2. Substitute back:
$$3\sqrt{5} \ + \ 3\sqrt{5} \ - \ 6\sqrt{5} = (3+3-6)\sqrt{5} = 0.$$

2C Multiplying and dividing surds

1.

(1) $6\sqrt{10}$ br>($2\sqrt{2}$ \times $3\sqrt{5} = 6\sqrt{10}$)	(2) $16\sqrt{3}$ br>($\sqrt{8} \times 4\sqrt{6} = 16\sqrt{3}$)	(3) $25\sqrt{2}$ br>($5\sqrt{10}$ $ imes$) $\sqrt{5} = 25\sqrt{2}$)
(4) $21x\sqrt{x}$	(5) $6x^4$	(6) 10
$(3\sqrt{x} imes7\sqrt{x^2}=21x\sqrt{x})$	$(\sqrt{4x^3} imes \sqrt{9x^5} = 6x^4)$	$(\frac{1}{2}\sqrt{20} \times 2\sqrt{5} = 10)$
(7) $36 a \sqrt{a}$	(8) $30b^2$	(9) 40
$(2\sqrt{3a} \times 3\sqrt{12a^2} = 36a\sqrt{a})$	$(\frac{1}{3}\sqrt{45b^3} \times 6\sqrt{5b} = 30b^2)$	($4\sqrt{50} \times \sqrt{2} = 40$)
(10) 30	(11) $4x^2y\sqrt{xy}$	(12) $12x^3 \sqrt{6x}$
($2\sqrt{75} \times \sqrt{3} = 30$)	$(\sqrt{8x^2y} imes \sqrt{2x^3y^2} = 4x^2y\sqrt{xy})$	$(3\sqrt{2x^4} \times 4\sqrt{3x^3} = 12x^3\sqrt{6x})$
(13) $20 a^2 b^2 \sqrt{3a}$	(14) $42 x^3 y^2 \sqrt{2xy}$	(15) $\sqrt{3}$
$(5\sqrt{6a^2b^3} \times 2\sqrt{2a^3b} = 20a^2b^2\sqrt{3a})$	$(2\sqrt{7x^5y^2} \times 3\sqrt{14x^2y^3} = 42x^3y^2\sqrt{2xy})$	$(\frac{1}{4}\sqrt{96} \times \frac{1}{2}\sqrt{2} = \sqrt{3})$
(16) 15	(17) $18x^3$	(18) $4x^4$
$(\frac{2}{5}\sqrt{125} \times \frac{3}{2}\sqrt{5} = 15)$	($6\sqrt{3x^4} imes rac{1}{3}\sqrt{27x^2} = 18x^3$)	$(\sqrt{x^3} imes 4\sqrt{x^5} = 4x^4)$

2.

1) 2	2) 5	3) $\sqrt{3}$	4) 4
5) 1	6) ³ / ₂	7) 1	8) 2
9) 1	10) 1	11) $\sqrt{3x}$	12) $\sqrt{5x}$
13) 2 <i>a</i>	14) 1	15) $\frac{a\sqrt{3}}{b}$	16) $2\sqrt{\frac{y}{x}}$
17) a	18) $2x^2$	19) $x^2\sqrt{y}$	20) $rac{y\sqrt{y}}{x^2}$

3.

 $\begin{aligned} &|(1)\sqrt{2}(\sqrt{3}+2\sqrt{5}) \\ &= \sqrt{2}\cdot\sqrt{3}+\sqrt{2}\cdot2\sqrt{5} = \sqrt{6}+2\sqrt{10} \\ &|(2)-2\sqrt{5}(\sqrt{7}+\sqrt{2}) \\ &= -2\sqrt{5}\cdot\sqrt{7}-2\sqrt{5}\cdot\sqrt{2} = -2\sqrt{35}-2\sqrt{10} \\ &|(3)\sqrt{7}(3\sqrt{5}-5\sqrt{7}) \\ &= 3\sqrt{35}-5\cdot7 = 3\sqrt{35}-35 \\ &|(4)3\sqrt{2}(2\sqrt{5}+\sqrt{3}) \\ &= 3\sqrt{2}\cdot2\sqrt{5}+3\sqrt{2}\cdot\sqrt{3} = 6\sqrt{10}+3\sqrt{6} \\ &|(5)-4\sqrt{3}(\sqrt{6}-2\sqrt{2}) \\ &= -4\sqrt{18}+8\sqrt{6} = -4\cdot3\sqrt{2}+8\sqrt{6} = -12\sqrt{2}+8\sqrt{6} \\ &|(6)5\sqrt{2}(\sqrt{8}+\sqrt{10}) \\ &= 5\sqrt{16}+5\sqrt{20} = 5\cdot4+5\cdot2\sqrt{5} = 20+10\sqrt{5} \end{aligned}$

2D Rationalising the denominator

1.

(1) $\frac{3\sqrt{2}}{2}$	(2) $\frac{11\sqrt{5}}{5}$	(3) $\frac{2\sqrt{7}}{21}$	(4) $\frac{5\sqrt{2}}{8}$
(5) $\frac{\sqrt{42}}{7}$	(6) $\frac{\sqrt{5}}{5}$	(7) $\sqrt{6}$	(8) $\frac{\sqrt{15}}{7}$
(9) $\frac{4\sqrt{3}}{3}$	(10) $\frac{\sqrt{3}}{2}$	(11) $\sqrt{6}$	(12) $\frac{\sqrt{10}}{4}$
(13) $\sqrt{3}$	(14) $5\sqrt{2}$	(15) $\frac{7\sqrt{5}}{10}$	(16) $\frac{\sqrt{2}}{2}$

2.

(1) $\frac{\sqrt{3}}{2}$	(2) $\frac{2\sqrt{5}}{5}$	(3) $\frac{\sqrt{10}}{4}$	(4) $\frac{\sqrt{6}}{3}$
(5) $\frac{\sqrt{14}}{7}$	(6) $\frac{\sqrt{30}}{3}$	(7) $\frac{3\sqrt{14}}{14}$	(8) $\sqrt{5}$
(9) $\frac{\sqrt{21}}{6}$	(10) $\frac{2\sqrt{22}}{11}$	(11) $\frac{\sqrt{30}}{6}$	(12) $\frac{\sqrt{33}}{3}$
(13) $\frac{2\sqrt{15}}{5}$	(14) $\frac{3\sqrt{13}}{13}$	(15) $\frac{\sqrt{42}}{4}$	(16) $\frac{\sqrt{22}}{11}$

3.

1) $rac{\sqrt{10}+2\sqrt{5}}{2}$	2) $\frac{3\sqrt{30} - 10\sqrt{3}}{5}$	3) $\frac{14\sqrt{2} + 3\sqrt{14}}{14}$	4) $3\sqrt{2}$
5) $\frac{11\sqrt{2}}{2}$	6) $\frac{\sqrt{33} + 6\sqrt{11}}{3}$	7) $\frac{2\sqrt{14} - \sqrt{42}}{8}$	8) $\frac{5\sqrt{2}}{2} - \sqrt{10}$

1) $\sqrt{3} - \sqrt{2}$	2) $3(\sqrt{2}+1) = 3\sqrt{2}+3$	3) $2+\sqrt{3}$	4) $\frac{11+4\sqrt{6}}{5}$
5) $2 - \sqrt{3}$	6) $\frac{2(\sqrt{5}+\sqrt{2})}{3}$	7) $3\sqrt{7}$ – 8	8) $\frac{2\sqrt{10} + 4\sqrt{5} - 5\sqrt{2} - 5}{3}$
9) $\frac{12 - 4\sqrt{2}}{7}$	10) 2 $-\sqrt{3}$	11) 9 $- 4\sqrt{5}$	12) $rac{6+2\sqrt{2}}{7}$

2E Review of index laws

1	
1	٠

$\frac{3}{10}x^{5}$	$4y^9$	$\frac{5}{4}a^3b^4$	
$10p^5q^5$	$\frac{3}{2}m^7n^3$	$14r^7$	
$\frac{2}{3}u^5v^3$	$3s^9$	$6x^{10}$	
$\frac{1}{2}a^{3}$	$4c^6d^4$	$\frac{2}{5}w^{6}$	
$2x^3$	$5y^4$	$3m^4n$	$3pq^4$
$3a^2b$	$5r^{5}s^{3}$	$2t^3u^2$	$3z^6$

$3a^2b$	$5r^{5}s^{3}$	$2t^3u^2$	$3z^6$
$\frac{2c^3}{d}$	$2h^2k$	$5x^2y^2$	$5g^4$
$81b^{8}$	$rac{x^6}{4y^2}$	$125p^{12}q^{3}$	$\frac{8m^3}{n^6}$
$16t^{10}$	$\frac{27r^6}{s^3}$	$4u^8v^6$	$\frac{p^4}{9q^{10}}$
$\frac{16a^6b^2}{c^2}$	$343k^6$	$\frac{n^{20}}{16}$	$36w^4x^6$

$3 x^9 y^2$	$2 a^3 b$
$rac{1}{2}m^5n^5$	$3p^{12}q^4$
$2r^5s^2$	$4 u^7 v^2$

2F Negative indices

1.

$\frac{1}{a^5}$	$\frac{3}{x^7}$	$\frac{6 z^3}{y}$	$rac{2p^5}{q^2}$
$\frac{9s^2}{r^4t^3}$	$\frac{4}{7 a^2}$	$2 b^3$	$\frac{5d^2}{6c^4}$
$\frac{q^4}{3p^2}$	$rac{7 x^5}{y^2}$	$\frac{2c^2b^5}{3a^3}$	$\frac{3z^5x^2}{2y^3}$
$\frac{5q}{2p^4r^3}$	$\frac{9 t^4}{r^2 s}$	$\frac{n^5}{2m^4}$	$\frac{c^3}{a^2 b^4}$
$\frac{6g^7}{f^3}$	$\frac{2 t^2}{s^3}$	$\frac{4w^3}{u^6v}$	$8h^4k^2$
$rac{2cb^5}{9a^2d^2}$	$\frac{2 f^2}{3 e^5}$	$\frac{7p^4n^2}{2m^3}$	$\frac{3 z}{x^2 y^4}$
$rac{2d^4}{a^5b^2c^3}$	$\frac{1}{a^2 b^3 c}$	$\frac{2q^6}{3p^6}$	$\frac{2z^3}{x^2y}$

$\frac{2 x^{12}}{y}$	$\frac{a^5}{8 b^{19}}$
$\frac{8 n^{10}}{m^3}$	$\frac{128}{q^3}$
$\frac{27y^3}{2x^2}$	$rac{50}{r^2s^3}$
$\frac{4b^{18}}{3a^{13}}$	$\frac{9}{4} k^{17}$

3G Scientific notation

1.

345	607,000	90,010	0.0056
0.00002105	80,050,000	0.0003021	1,234,000
0.070001	4,020,000,000	0.0000006334	1006
295	0.0000000502	0.000009875	120,000,000
34,010	0.000006015	27.5	0.0005333
1256	704,000	901.23	0.0003105
0.000002	45,670,000	0.0000006666	0.012345

$2.3 imes10^4$ (2)	$-5.60 imes10^{5}$ (3)	$9.0 imes10^{-4}$ (2)	$3 imes 10^5$ (1)
$-3.04 imes 10^{-3}$ (3)	$8.75 imes10^7$ (3)	$1.230 imes 10^{-3}$ (4)	$-1.0 imes10^4$ (2)
$6.70 imes10^2$ (3)	$4.4 imes10^{-7}$ (2)	$1.00 imes10^{6}$ (3)	$-5.00 imes 10^{-2}$ (3)
$1.2 imes 10^2$ (2)	$3.8 imes 10^{-4}$ (2)	$-2.47 imes10^{5}$ (3)	$7.5 imes10^2$ (2)
$1.00 imes10^1$ (3)	$-9.100 imes10^{6}$ (4)	$3.26 imes10^{-6}$ (3)	$4.0 imes10^{5}$ (2)
$-2.0 imes10^{-3}$ (2)	$-8 imes10^{-2}$ (1)	$1.2 imes 10^5$ (2)	$-3.3 imes 10^{-1}$ (2)

3H Rational indices

1.

$8^{1/3} = 2$	$25^{1/2} = 5$	$36^{3/2} = 216$	$32^{-1/5} = 1/2$
$49^{1/2} = 7$	$27^{2/3} = 9$	$16^{1/4} = 2$	$64^{-3/2} = 1/512$

2.

$a^{rac{1}{4}} imes a^{rac{3}{4}}=a$	$rac{b^{2/5}c^{3/10}}{b^{1/5}}=\ b^{1/5}c^{3/10}$	$(x^2y^3)^{1/4} imes x^{3/4}= x^{5/4}y^{3/4}$
$\Big(rac{p^{2/3}q^{3/2}}{p^{1/6}}\Big)^{1/2}= p^{1/4}q^{3/4}$	$rac{a^{3/5}}{b^{1/2}} imes a^{2/5} b^{1/2} = a$	$rac{(m^4n^3)^{1/2}}{m^{3/2}n^{1/4}}=m^{1/2}n^{5/4}$

$45^{1/2}$	$x^{5/3}$	$(a^2b^3)^{1/4}$	$72^{1/2}$
$64^{1/3}$	$m^{-4/3}$	$(2x^3)^{1/4}$	$(p^2q^3)^{1/2}$
$50^{1/2}$	$81^{1/3}$	$(2x^4)^{1/2}$	$(m^5)^{1/4} = m^{5/4}$
$(a^2b^4)^{1/3}$	$(x^5y^2)^{1/2}$	$\left(\frac{5p^3}{q^4}\right)^{1/2}$	$(3c^2)^{1/2}$

3I Exponential equations

1	
1	•

$egin{array}{ccc} 2^x = 16 \implies \ x = 4 \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{ccc} 9^x=3 \implies \ x=rac{1}{2} \end{array}$	$ig(rac{1}{2}ig)^x = \ rac{1}{8} \Longrightarrow x = 3$
$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{lll} 4^x = rac{1}{16} \implies x = -2 \end{array}$	$egin{array}{ccc} 3^x=81 \implies \ x=4 \end{array}$	$egin{array}{c} 16^x=2 \implies x=rac{1}{4} \end{array}$
$egin{array}{lll} 3^x = rac{1}{27} \implies x = -3 \end{array}$	$egin{array}{lll} 2^{x+1}=\ rac{1}{16} \Longrightarrow x=\ -5 \end{array}$	$egin{array}{lll} 4^{-x} = rac{1}{64} \implies x=3 \end{array}$	$egin{array}{lll} 9^{x-2} = \ rac{1}{81} \implies x = 0 \end{array}$
$egin{array}{rcl} 5^{-x}=\ rac{1}{125} \implies x=3 \end{array}$	$egin{array}{ccc} 6^x = 36 \implies \ x = 2 \end{array}$	$ig(rac{1}{3}ig)^x = rac{1}{81} \implies x = 4$	$egin{array}{rcl} 8^{1-x} = \ rac{1}{2} \implies x = rac{4}{3} \end{array}$

2.

$egin{array}{ccc} 9^x=27 \implies \ x=rac{3}{2} \end{array}$	$2^{x+2} = \ 32 \implies x = 3$	$egin{array}{lll} 25^{-x} = \ rac{1}{5} \implies x = rac{1}{2} \end{array}$	$ig(rac{1}{2}ig)^x=8\implies x=-3$
$egin{array}{lll} 4^{x-1}=\ 8\implies x=rac{5}{2} \end{array}$	$egin{array}{lll} 81^{1-x}=\ rac{1}{9} \implies x=rac{3}{2} \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{ll} 16^{-x} = \ rac{1}{256} \implies x = 2 \end{array}$

- 1. Initial investment: \$8,000
- 2. Value after 7 years (nearest dollar): \$12,301
- 3. Number of years until exceeding \$20,000: 15 years

3J Graphs of exponentials

1.

 $\begin{pmatrix} \frac{3}{2} \end{pmatrix}^{x} - \text{Increasing} \\ \begin{pmatrix} \frac{1}{10} \end{pmatrix}^{x} - \text{Decreasing} \\ 4^{-x} & - \text{Decreasing} \\ (2.5)^{-x} & - \text{Decreasing} \\ \begin{pmatrix} \frac{5}{7} \end{pmatrix}^{x} - \text{Decreasing} \\ \begin{pmatrix} 0.99 \end{pmatrix}^{x} & - \text{Decreasing} \\ \begin{pmatrix} \frac{1}{2} \end{pmatrix}^{-x} - \text{Increasing} \\ \begin{pmatrix} 3.01 \end{pmatrix}^{-x} & - \text{Decreasing} \\ \end{pmatrix}$

2.

a.

Х	-3	-2	-1	0	1	2	3
У	-1/8	-1/4	-1/2	-1	-2	-4	-8

b.

- c. y-values will decrease as x increases
- d. y-values will increase (approach to 0) as x decreases
- e. no, as x decreases, the y-values will approach to 0 but never touch 0
- f. y=-1

3K Exponential growth and decay

1.

Car Increasing 12% Annually

- a. $V = 8000 (1.12)^n$.
- b. $V(2) \approx \$100,352, V(5) \approx \$141,083.$
- c. Exceeds \$120k after 3.6 years (approx).

2.

Smartphone Depreciating 15% Annually

a. $V = 1200 (0.85)^n$. b. After 3 years: \$737 c. After 7 years: \$385 d. Falls below \$100 after 15.3 years (approx).

3.

Bacteria 5% Growth Per Hour

a. $P = 4000 (1.05)^t$.

- b. After 6 hours: 5,360 bacteria, after 12 hours: 7,183 bacteria.
- c. Reaches 10,000 about 18.8 hours.
- d. Stays below 12,500 for up to 23.3 hours (approx).

3L Compound interest

1.

Annual compounding ($A = P(1 + rac{r}{100})^n$):

- (a) \$2,500 @3.8% 2yr: \$2,693.60
- (b) \$6,400 @4.25% 5yr: \$7,886.54
- (c) \$10,500 @6% 3yr: \$12,506.67
- (d) \$20,000 @5.5% 4yr: \$24,769.80
- (e) \$3,200 @7.1% 6yr: \$4,834.02
- (f) \$9,750 @4.9% 5yr: \$12,366.75
- (g) \$15,000 @2.75% 2yr: \$15,833.33
- (h) \$18,300 @3.6% 8yr: \$24,357.66

2.

Various compounding frequencies ($A = P(1 + rac{r/100}{m})^{mn}$):

- (a) \$2,800 @3.2% semiannual 5yr: \$3,267.60
- (b) \$9,400 @4.9% quarterly 6.5yr: \$12,657.22
- (c) \$15,000 @6.15% monthly 4yr: \$19,292.55
- (d) \$18,000 @7.5% quarterly 10yr: \$38,094.30
- (e) \$33,500 @9.2% semiannual 7yr: \$60,156.92
- (f) \$4,750 @5.25% monthly 3yr: \$5,556.79
- (g) \$86,000 @8.6% quarterly 12yr: \$239,275.00 (approx)
- (h) \$20,000 @2.75% semiannual 3yr: \$21,693.40

3.

Jacob invests \$12,000 at 6.5% p.a. for 2 years

(a) Monthly compounding final: \$13,668.72 (approx).

(b) Quarterly compounding final: $13,625.88 \rightarrow$ The difference is 42.84 more with monthly.

4.

Car \$28,000 Depreciating 18%

- (a) After 3 years: \$15,438.30 (approx).
- (b) Half (~\$14,000) after ~3.5 years.

5.

Emily invests \$45,000 at 4.6%

- (a) Semiannual formula: $A=45000ig(1+0.046/2ig)^{10}.$
- (b) Final (semiannual) \$56,632.05 (approx).

(c) Monthly compounding \approx \$56, 348.55. A small difference of a few hundred dollars.

6.

Laptop \$2,400

Loses 25% after first year \rightarrow \$1,800.

Then 10% yearly (reducing-balance).

- 1. After 1 year: \$1,800.
- 2. After 2 years: \$1,620.
- Falls below \$500 after about 13.1 years in total; so it's under \$500 during the 14th year.